ATM regulates Cdt1 stability during the unperturbed S phase to prevent re-replication

نویسندگان

  • Satoko Iwahori
  • Daisuke Kohmon
  • Junya Kobayashi
  • Yuhei Tani
  • Takashi Yugawa
  • Kenshi Komatsu
  • Tohru Kiyono
  • Nozomi Sugimoto
  • Masatoshi Fujita
چکیده

Ataxia-telangiectasia mutated (ATM) plays crucial roles in DNA damage responses, especially with regard to DNA double-strand breaks (DSBs). However, it appears that ATM can be activated not only by DSB, but also by some changes in chromatin architecture, suggesting potential ATM function in cell cycle control. Here, we found that ATM is involved in timely degradation of Cdt1, a critical replication licensing factor, during the unperturbed S phase. At least in certain cell types, degradation of p27(Kip1) was also impaired by ATM inhibition. The novel ATM function for Cdt1 regulation was dependent on its kinase activity and NBS1. Indeed, we found that ATM is moderately phosphorylated at Ser1981 during the S phase. ATM silencing induced partial reduction in levels of Skp2, a component of SCF(Skp2) ubiquitin ligase that controls Cdt1 degradation. Furthermore, Skp2 silencing resulted in Cdt1 stabilization like ATM inhibition. In addition, as reported previously, ATM silencing partially prevented Akt phosphorylation at Ser473, indicative of its activation, and Akt inhibition led to modest stabilization of Cdt1. Therefore, the ATM-Akt-SCF(Skp2) pathway may partly contribute to the novel ATM function. Finally, ATM inhibition rendered cells hypersensitive to induction of re-replication, indicating importance for maintenance of genome stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Cdt1-geminin complex licenses chromatin for DNA replication and prevents rereplication during S phase in Xenopus.

Initiation of DNA synthesis involves the loading of the MCM2-7 helicase onto chromatin by Cdt1 (origin licensing). Geminin is thought to prevent relicensing by binding and inhibiting Cdt1. Here we show, using Xenopus egg extracts, that geminin binding to Cdt1 is not sufficient to block its activity and that a Cdt1-geminin complex licenses chromatin, but prevents rereplication, working as a mole...

متن کامل

DTL/CDT2 is essential for both CDT1 regulation and the early G2/M checkpoint.

Checkpoint genes maintain genomic stability by arresting cells after DNA damage. Many of these genes also control cell cycle events in unperturbed cells. By conducting a screen for checkpoint genes in zebrafish, we found that dtl/cdt2 is an essential component of the early, radiation-induced G2/M checkpoint. We subsequently found that dtl/cdt2 is required for normal cell cycle control, primaril...

متن کامل

ATM in prevention of genomic instability

ATM (ataxia-telangiectasia mutated) kinase is a key factor in DNA damage responses, and mutations in ATM cause AT (ataxia-telangi-ectasia), a form of genomic instability syndrome. 1 Various forms of genotoxic agents that generate DsB (double-stranded DNA breaks) activate ATM and induce DNA damage checkpoint pathways involving cell cycle arrest and repair of legions. ATM plays a central role in ...

متن کامل

Chromatin unfolding by Cdt1 regulates MCM loading via opposing functions of HBO1 and HDAC11-geminin.

The efficiency of metazoan origins of DNA replication is known to be enhanced by histone acetylation near origins. Although this correlates with increased MCM recruitment, the mechanism by which such acetylation regulates MCM loading is unknown. We show here that Cdt1 induces large-scale chromatin decondensation that is required for MCM recruitment. This process occurs in G₁, is suppressed by G...

متن کامل

Regulation of cell cycle progression by forkhead transcription factor FOXO3 through its binding partner DNA replication factor Cdt1.

To ensure genome stability, DNA must be replicated once and only once during each cell cycle. Cdt1 is tightly regulated to make sure that cells do not rereplicate their DNA. Multiple regulatory mechanisms operate to ensure degradation of Cdt1 in S phase. However, little is known about the positive regulators of Cdt1 under physiological conditions. Here we identify FOXO3 as a binding partner of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2014